Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10799, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734717

RESUMO

Liquefaction is a devastating consequence of earthquakes that occurs in loose, saturated soil deposits, resulting in catastrophic ground failure. Accurate prediction of such geotechnical parameter is crucial for mitigating hazards, assessing risks, and advancing geotechnical engineering. This study introduces a novel predictive model that combines Extreme Learning Machine (ELM) with Dingo Optimization Algorithm (DOA) to estimate strain energy-based liquefaction resistance. The hybrid model (ELM-DOA) is compared with the classical ELM, Adaptive Neuro-Fuzzy Inference System with Fuzzy C-Means (ANFIS-FCM model), and Sub-clustering (ANFIS-Sub model). Also, two data pre-processing scenarios are employed, namely traditional linear and non-linear normalization. The results demonstrate that non-linear normalization significantly enhances the prediction performance of all models by approximately 25% compared to linear normalization. Furthermore, the ELM-DOA model achieves the most accurate predictions, exhibiting the lowest root mean square error (484.286 J/m3), mean absolute percentage error (24.900%), mean absolute error (404.416 J/m3), and the highest correlation of determination (0.935). Additionally, a Graphical User Interface (GUI) has been developed, specifically tailored for the ELM-DOA model, to assist engineers and researchers in maximizing the utilization of this predictive model. The GUI provides a user-friendly platform for easy input of data and accessing the model's predictions, enhancing its practical applicability. Overall, the results strongly support the proposed hybrid model with GUI serving as an effective tool for assessing soil liquefaction resistance in geotechnical engineering, aiding in predicting and mitigating liquefaction hazards.

2.
Membranes (Basel) ; 13(12)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38132904

RESUMO

Vacuum membrane distillation (VMD) has attracted increasing interest for various applications besides seawater desalination. Experimental testing of membrane technologies such as VMD on a pilot or large scale can be laborious and costly. Machine learning techniques can be a valuable tool for predicting membrane performance on such scales. In this work, a novel hybrid model was developed based on incorporating a spotted hyena optimizer (SHO) with support vector machine (SVR) to predict the flux pressure in VMD. The SVR-SHO hybrid model was validated with experimental data and benchmarked against other machine learning tools such as artificial neural networks (ANNs), classical SVR, and multiple linear regression (MLR). The results show that the SVR-SHO predicted flux pressure with high accuracy with a correlation coefficient (R) of 0.94. However, other models showed a lower prediction accuracy than SVR-SHO with R-values ranging from 0.801 to 0.902. Global sensitivity analysis was applied to interpret the obtained result, revealing that feed temperature was the most influential operating parameter on flux, with a relative importance score of 52.71 compared to 17.69, 17.16, and 14.44 for feed flowrate, vacuum pressure intensity, and feed concentration, respectively.

3.
Sci Rep ; 13(1): 21057, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030733

RESUMO

Fine particulate matter (PM2.5) is a significant air pollutant that drives the most chronic health problems and premature mortality in big metropolitans such as Delhi. In such a context, accurate prediction of PM2.5 concentration is critical for raising public awareness, allowing sensitive populations to plan ahead, and providing governments with information for public health alerts. This study applies a novel hybridization of extreme learning machine (ELM) with a snake optimization algorithm called the ELM-SO model to forecast PM2.5 concentrations. The model has been developed on air quality inputs and meteorological parameters. Furthermore, the ELM-SO hybrid model is compared with individual machine learning models, such as Support Vector Regression (SVR), Random Forest (RF), Extreme Learning Machines (ELM), Gradient Boosting Regressor (GBR), XGBoost, and a deep learning model known as Long Short-Term Memory networks (LSTM), in forecasting PM2.5 concentrations. The study results suggested that ELM-SO exhibited the highest level of predictive performance among the five models, with a testing value of squared correlation coefficient (R2) of 0.928, and root mean square error of 30.325 µg/m3. The study's findings suggest that the ELM-SO technique is a valuable tool for accurately forecasting PM2.5 concentrations and could help advance the field of air quality forecasting. By developing state-of-the-art air pollution prediction models that incorporate ELM-SO, it may be possible to understand better and anticipate the effects of air pollution on human health and the environment.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Material Particulado/análise , Algoritmos , Índia
4.
Environ Monit Assess ; 195(1): 60, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36326946

RESUMO

The present study intends to use machine learning (ML) and deep learning (DL) models to forecast PM2.5 concentration at a location in Delhi. For this purpose, multi-layer feed-forward neural network (MLFFNN), support vector machine (SVM), random forest (RF) and long short-term memory networks (LSTM) have been applied. The air pollutants, e.g., CO, Ozone, PM10, NO, NO2, NOx, NH3, SO2, benzene, toluene, as well as meteorological parameters (temperature, wind speed, wind direction, rainfall, evaporation, humidity, pressure, etc.), have been used as inputs in the present study. Moreover, this is one of the first papers that employ aerodynamic roughness coefficient as an input parameter for the prediction of PM2.5 concentration. The result of the study shows that the LSTM model with index of agreement (IA) 0.986, root mean square error (RMSE) 21.510, Nash-Sutcliffe efficiency index (NSE) 0.945, (coefficient of determination)R2 0.945, and (correlation coefficient)R 0.972 is the best performing technique for the prediction of PM2.5 followed by MLFFNN, SVM, and RF models. The sensitivity analysis for the LSTM model reported that PM10, wind speed, NH3, and benzene are the key influencing parameters for the estimation of PM2.5. The findings in this work suggest that the LSTM could advance in PM2.5 forecasting and thus would be useful for developing fine-scale, state-of-the-art air pollution forecasting models.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aprendizado Profundo , Benzeno/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Aprendizado de Máquina , Material Particulado/análise
5.
PLoS One ; 17(11): e0277079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36327280

RESUMO

Atmospheric air temperature is the most crucial metrological parameter. Despite its influence on multiple fields such as hydrology, the environment, irrigation, and agriculture, this parameter describes climate change and global warming quite well. Thus, accurate and timely air temperature forecasting is essential because it provides more important information that can be relied on for future planning. In this study, four Data-Driven Approaches, Support Vector Regression (SVR), Regression Tree (RT), Quantile Regression Tree (QRT), ARIMA, Random Forest (RF), and Gradient Boosting Regression (GBR), have been applied to forecast short-, and mid-term air temperature (daily, and weekly) over North America under continental climatic conditions. The time-series data is relatively long (2000 to 2021), 70% of the data are used for model calibration (2000 to 2015), and the rest are used for validation. The autocorrelation and partial autocorrelation functions have been used to select the best input combination for the forecasting models. The quality of predicting models is evaluated using several statistical measures and graphical comparisons. For daily scale, the SVR has generated more accurate estimates than other models, Root Mean Square Error (RMSE = 3.592°C), Correlation Coefficient (R = 0.964), Mean Absolute Error (MAE = 2.745°C), and Thiels' U-statistics (U = 0.127). Besides, the study found that both RT and SVR performed very well in predicting weekly temperature. This study discovered that the duration of the employed data and its dispersion and volatility from month to month substantially influence the predictive models' efficacy. Furthermore, the second scenario is conducted using the randomization method to divide the data into training and testing phases. The study found the performance of the models in the second scenario to be much better than the first one, indicating that climate change affects the temperature pattern of the studied station. The findings offered technical support for generating high-resolution daily and weekly temperature forecasts using Data-Driven Methodologies.


Assuntos
Mudança Climática , Hidrologia , Temperatura , Previsões , Agricultura
6.
Environ Sci Pollut Res Int ; 29(18): 26860-26876, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34860346

RESUMO

Groundwater is considered as an imperative component of the accessible water assets across the world. Due to urbanization, industrialization and intensive farming practices, the groundwater resources have been exposed to large-scale depletion and quality degradation. The prime objective of this study was to evaluate the groundwater quality for drinking purposes in Mewat district of Haryana, India. For this purpose, twenty-five groundwater samples were collected from hand pumps and tube wells spread over the entire district. Samples were analyzed for pH, electrical conductivity (EC), total dissolved solids (TDS), total hardness (TH), turbidity, total alkalinity (TA), cations and anions in the laboratory using the standard methods. Two different water quality indices (weighted arithmetic water quality index and entropy weighted water quality index) were computed to characterize the groundwater quality of the study area. Ordinary Kriging technique was applied to generate spatial distribution map of the WQIs. Four semivariogram models, i.e. circular, spherical, exponential and Gaussian were used and found to be the best fit for analyzing the spatial variability in terms of weighted arithmetic index (GWQI) and entropy weighted water quality index (EWQI). Hierarchical cluster analysis (HCA), principal component analysis (PCA) and discriminant analysis (DA) were applied to provide additional scientific insights into the information content of the groundwater quality data available for this study. The interpretation of WQI analysis based on GWQI and EWQI reveals that 64% of the samples belong to the "poor" to "very poor" bracket. The result for the semivariogram modeling also shows that Gaussian model obtains the best fit for both EWQI and GWQI dataset. HCA classified 25 sampling locations into three main clusters of similar groundwater characteristics. DA validated these clusters and identified a total of three significant variables (pH, EC and Cl) by adopting stepwise method. The application of PCA resulted in three factors explaining 69.81% of the total variance. These factors reveal how processes like rock water interaction, urban waste discharge and mineral dissolution affect the groundwater quality.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Água Potável/análise , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Água Subterrânea/química , Poluentes Químicos da Água/análise , Qualidade da Água
7.
Radiat Prot Dosimetry ; 158(4): 466-78, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24185916

RESUMO

A part of Mansehra Granite was selected for the assessment of radiological hazards. The average activity concentrations of (226)Ra, (232)Th and (40)K were found to be 27.32, 50.07 and 953.10 Bq kg(-1), respectively. These values are in the median range when compared with the granites around the world. Radiological hazard indices and annual effective doses were estimated. All of these indices were found to be within the criterion limits except outdoor external dose (82.38 nGy h(-1)) and indoor external dose (156.04 nGy h(-1)), which are higher than the world's average background levels of 51 and 55 nGy h(-1), respectively. These values correspond to an average annual effective dose of 0.867 mSv y(-1), which is less than the criterion limit of 1 mSv y(-1) (ICRP-103). Some localities in the Mansehra city have annual effective dose higher than the limit of 1 mSv y(-1). Overall, the Mansehra Granite does not pose any significant radiological health hazard in the outdoor or indoor.


Assuntos
Radioisótopos de Potássio/análise , Doses de Radiação , Monitoramento de Radiação/métodos , Rádio (Elemento)/análise , Espectrometria gama/métodos , Tório/análise , Poluição do Ar em Ambientes Fechados/análise , Exposição Ambiental , Raios gama , Geografia , Humanos , Paquistão , Radiometria , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...